
ETH Zürich

Laurent Vanbever

March, 17 2014

Princeton University

DRAGON: Distributed Route AGgregatiON
Joint work with: João Luís Sobrinoh, Franck Le and Jennifer Rexford

 Scalable routing systems maintain

detailed information 
about nearby destination

coarse-grained information 
about far-away destination

BGP maintains detailed information

about every destination (i.e., network)
Sign Post Forest, Watson Lake, Yukon

mobile Internet of things sensors virtual machines

The problem is that the number of devices

connected to the Internet increases rapidly

BGP routers must also maintain routes for

IPv6 networks in addition of IPv4 networks

IPv6 ramping up could easily double

the size of the Internet routing table

The growth of the number of destinations

has serious consequences for the Internet

memory routing and forwarding table size

security cost of signing & verifying BGP route

time
convergence time after a failure

boot time for a router, session, …

routing and forwarding table size

DRAGON: Distributed Route AGgregatiON

Route aggregation 101

Background1

Distributed filtering

preserving consistency

2

Performance

up to 80% of filtering efficiency

3

DRAGON: Distributed Route AGgregatiON

1

Distributed filtering

preserving consistency

Performance

up to 80% of filtering efficiency

Route aggregation 101

Background

How do you maintain less

routing and/or forwarding information?

You make use of the IP prefix hierarchy

to remove redundant information

129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

An IP prefix identifies a set of IP addresses

129.0.0.0/8

129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

prefix length

2(32-8) IP addresses

An IP prefix identifies a set of IP addresses

which can be included into another one

129.0.0.0/8

129.132.2.0/24

129.133.0.0/16

129.132.1.0/24
129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

parent

child
child

child

129.0.0.0/8

129.132.2.0/24

129.133.0.0/16

129.132.1.0/24

Forwarding is done along the most specific prefix,

i.e., the smallest set containing the IP address

129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

x

Input packet: 129.132.1.1

129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

A child prefix can be filtered whenever

it shares the same output interface as its parent

129.0.0.0/8

129.132.2.0/24

129.133.0.0/16

129.132.1.0/24

parent

child
child

child

129.133.0.0/16

129.132.1.0/24

129.132.2.0/24

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

IF#2

IF#2

IF#3

Routing Table

129.0.0.0/8

129.132.2.0/24

129.133.0.0/16

129.132.1.0/24

child

child

parent

child

A child prefix can be filtered whenever

it shares the same output interface as its parent

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

Routing Table

129.133.0.0/16 IF#3

Exactly the same forwarding as before

129.0.0.0/8 129.133.0.0/16

parent

child

A child prefix can be filtered whenever

it shares the same output interface as its parent

…

…

IP prefix Output Interface

129.0.0.0/8 IF#2

Routing Table

129.133.0.0/16 IF#3

Exactly the same forwarding as before

129.0.0.0/8 129.133.0.0/16

parent

child

A child prefix can be filtered whenever

it shares the same output interface as its parent

x

Input packet: 129.132.1.1

Numerous previous works

have studied this problem

2013

2012

2011

2010

2009

1999

(Zhao, INFOCOM); (Liu, GLOBECOM)

(Li, INFOCOM); (Uzmi, CoNEXT)

(Draves, INFOCOM)

(Karpilovsky, IEEE TNSM)

(Ballani, NDSI)
… …

(Rétvári, SIGCOMM); (Rottenstreich, INFOCOM)

The problem is that they only provide local gain

local gain

router or network (Zhao, INFOCOM); (Liu, GLOBECOM)

(Li, INFOCOM); (Uzmi, CoNEXT)

(Karpilovsky, IEEE TNSM)

(Ballani, NDSI)

(Rétvári, SIGCOMM); (Rottenstreich, INFOCOM)

(Draves, INFOCOM)

…

Others proposed clean-slate approach to improve

scalability, but none of them is incrementally deployable

(Subramanian, SIGCOMM)

(Godfrey, SIGCOMM), (Andersen, SIGCOMM)

(Zhao, INFOCOM); (Liu, GLOBECOM)

(Li, INFOCOM); (Uzmi, CoNEXT)

(Karpilovsky, IEEE TNSM)

(Ballani, NDSI)

clean-slate

hard to deploy

local gain

router or network

(Rétvári, SIGCOMM); (Rottenstreich, INFOCOM)

(Draves, INFOCOM)

…

clean-slate

hard to deploy

works with BGP

incrementally deployable

DRAGONexisting

global gain

Internet-wide

local gain

router or network

DRAGON provides both

Internet-wide gain and incremental deployability

DRAGON: Distributed Route AGgregatiON

Route aggregation 101

Background

Distributed filtering

preserving consistency

2

Performance

up to 80% of filtering efficiency

DRAGON is distributed route-aggregation technique

where routers “think globally, but act locally”

Main result By comparing routes for different prefixes,

a router can locally compute which routes it

can filter and not export while preserving

routing & forwarding decisions globally

By comparing routes for different prefixes,

a router can locally compute which routes it

can filter and not export while preserving

routing & forwarding decisions globally

DRAGON is distributed route-aggregation technique

where routers “think globally, but act locally”

Main result

When a router filters q, it does not create any forwarding

entry for q and does not export q to any neighbor

129.0.0.0/8 (p)

129.132.1.0/24 (q)

DRAGON-enabled

router
129.0.0.0/8

129.0.0.0/8 IF#0
- -

Routing table

Input routes Output routes

DRAGON is distributed route-aggregation technique

where routers “think globally, but act locally”

By comparing routes for different prefixes,

a router can locally compute which routes it

can filter and not export while preserving

routing & forwarding decisions globally

Main result

DRAGON filters routing information,

preserving the flow of data traffic
Somewhere in Belgium…

DRAGON guarantees network-wide

routing and/or forwarding consistency post-filtering

Forwarding

consistency

Routing 
consistency

forwarding

neighbors

route

attribute
preserved property

at every node for

each data packet

Forwarding

consistency

Routing 
consistency

forwarding

neighbors

route

attribute

This talk

DRAGON guarantees network-wide

routing and/or forwarding consistency post-filtering

preserved property

at every node for

each data packet

u3

u6

u1

u8

u4

u5

u2

u9

u7

Let’s consider a mini-Internet

using simplified routing policies

u3

u6

u1

u8

u4

u5

u2

provider

customer

u9

u7

Solid lines join a provider and a customer,

with the provider drawn above the customer

u3

u1

p

u9u8

u7

u4

u5

u2

q

advertises p (parent)

advertises q (child)

u6

u3

u1

p

u9u8

u7

u4

u5

u2

q

u6 advertises p (10.0.0.0/16)

advertises q (10.0.0.0/24)

u3

u1

u9u8

u7

u4

u5

u2

q

u6

preference

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

u9u8

u7

u4

u5

u2

q

u6

Current routing state for q

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

u9u8

u7

u4

u5

u2

q

u6

Current routing state for q

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

u9u8

u7

u4

u5

u2

q

u6

Current routing state for q

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

u9u8

u7

u4

u5

u2

q

u6

Final routing state for q

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Current routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

u3

u1

p

u9u8

u7

u4

u5

u2

u6

Final routing state for p

2 route attributes

learned from customer

learned from provider

2 exportation rules

- customer routes to every neighbor

- provider routes to customers

Final routing state for pFinal routing state for q

u3

u1

p

u9u8

u7

u4

u5

u2

u6

u3

u1

u9u8

u7

u4

u5

u2

q

u6

These three node elect different attribute

for both q and p. They cannot filter.

p

u9

u7

u6

u9

u7

q

u6

u1

p

u8

u4

u5

u2u1

u8

u4

u5

u2

q

u3 u3

These node elect the same attribute

for q and p. They are of type PR.

PR node

What if PR nodes filter?

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

Combined routing state

q p

customer

provider

Legend

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

u4 filters q and stops

propagating it to u3

q p

customer

provider

Legend

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

u4 filters q and stops

propagating it to u3

q p

customer

provider

Legend

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

u3 looses its only

customer route to q

q p

customer

provider

Legend

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

u3 starts using a

provider route for q

q p

customer

provider

Legend

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

But what if u3 filters?

q p

customer

provider

Legend

if u3 filters, it uses a customer

route again for forwarding q

p

q

u1

u9u8

u7

u4

u5

u2

u3

u6

… and it saves space!

All PR nodes filtering is a Nash Equilibrium

retrieve a better route to forward traffic

gain space in its routing and forwarding tables

Any node has two incentives to filter q-routes:

with no node having an unilateral incentive to move away

u1

u9u8

u7

u4

u5

u2

u3

u6

Routing state post filtering is route consistent

Simple route consistent algorithm

Considering a node u,

a child prefix q,

its parent prefix p,

Considering a node u,

Algorithm

a child prefix q,

its parent prefix p,

Simple route consistent algorithm

If elected q-route ≥ elected p-route

then u filters q-routes

If u is not the destination for q and

Theorem 3 No matter the order in which node runs the algorithm,

a route consistent state is eventually reached

The algorithm is provably correct

Theorem 3 No matter the order in which node runs the algorithm,

a route consistent state is eventually reached

The algorithm is provably correct

For every node u, the elected q-route can only worsen

when an arbitrary set of nodes filter q-routes

Theorem 1

Theorem 3 No matter the order in which node runs the algorithm,

a route consistent state is eventually reached

The algorithm is provably correct

The elected q-route at a node u for which the

elected q-route < elected p-route  
is not affected if an arbitrary set of nodes filters

Theorem 2

For every node u, the elected q-route can only worsen

when an arbitrary set of nodes filter q-routes

Theorem 1

Theorem 3 No matter the order in which node runs the algorithm,

a route consistent state is eventually reached

The algorithm is provably correct

The elected q-route at a node u for which the

elected q-route < elected p-route  
is not affected if an arbitrary set of nodes filters

Theorem 2

For every node u, the elected q-route can only worsen

when an arbitrary set of nodes filter q-routes

Theorem 1

DRAGON relies on isotonicity, a property which

characterizes the combined policies of two neighbors

If an AS u prefers one route over another,

a neighboring AS does not have the

opposite preference

Isotonicity

required for optimality, not correctness

verified in a lot of actual routing policies

Observation

DRAGON: Distributed Route AGgregatiON

Route aggregation 101

Background

Distributed filtering

preserving consistency

Performance

up to 80% of filtering efficiency

3

filtering efficiency (%)

cummulated  
% of ASes

0

60

40

20

80

100

40 50 60 70 80 90

filtering efficiency (%)

cummulated  
% of ASes

0

60

40

20

80

100

40 51 60 70 80 90

optimal

In today’s Internet, optimal filtering is ~50%

as half of the Internet prefixes are parentless

% of filtered prefixes

cu
m

ul
at

ed
 %

 o
f A

Se
s

40 50 60 70 80 90

0

20

40

60

80

100

filtering efficiency (%)

cummulated  
% of ASes

0

80

route consistency

fwd consistency

40 90

~80% of the ASes reaches optimal filtering efficiency

51

DRAGON node can automatically introduce  
aggregation prefix to filter prefixes without parent

Routing system self-organizes itself in case of conflict

when more than one node announce the same parent prefix

Node can autonomously announce aggregation prefixes

based on local computation and preserving consistency

Number of aggregation prefixes introduced can be tuned

e.g., maximum prefix length or minimum # covered children

+28%

filtering efficiency (%)

cummulated  
% of ASes

0

60

40

20

80

100

40 50 60 70 79 90

original

optimal
optimal

w/ parents

Introducing <10% of parent prefixes

boosts the optimal efficiency to 79%

% of filtered prefixes

cu
m

ul
at

ed
 %

 o
f A

Se
s

40 50 60 70 80 90

0

20

40

60

80

100

% of filtered prefixes

cu
m

ul
at

ed
 %

 o
f A

Se
s

40 50 60 70 80 90

0

20

40

60

80

100

filtering efficiency (%)

cummulated  
% of ASes

0

60

40

20

78

100

40 90

route consistency

fwd consistency

Again, ~80% of the ASes reaches

optimal filtering efficiency

79

DRAGON: Distributed Route AGgregatiON

Route aggregation 101

Background

Distributed filtering

preserving consistency

Performance

up to 80% of filtering efficiency

DRAGON is a distributed route-aggregation algorithm

which automatically harnesses any aggregation potential

DRAGON preserves routing and forwarding decision

leveraging the isotonicity properties of Internet policies

DRAGON works on today’s routers

only require a software update and offers incentives to do it

DRAGON is more general than BGP

shortest-path, ad-hoc networks, etc.

